Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1 H-benzimidazol acid ethyl ester and the salts thereof (2024)

Title:

Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1 H-benzimidazol acid ethyl ester and the salts thereof

United States Patent 9925174


Abstract:

The invention relates to a new administration form for the oral application of the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof.


Inventors:

Brauns, Ulrich (Biberach, DE)

Application Number:

11/381890

Publication Date:

03/27/2018

Filing Date:

05/05/2006

Export Citation:

Click for automatic bibliography generation

Assignee:

Boehringer Ingelheim International GmbH (Ingelheim am Rhein, DE)

International Classes:

C07D401/12; A61K31/4439

Field of Search:

514/388, 514/338, 514/576, 514/574, 546/273.7

View Patent Images:

Download PDF 9925174

US Patent References:

8399678Process for the manufacture of dabigatran etexilate2013-03-19Gnad et al.546/273.4
20130052262DABIGATRAN ETEXILATE-CONTAINING ORAL PHARMACEUTICAL COMPOSITION2013-02-28Brueck et al.424/452
20110275824PROCESS FOR THE MANUFACTURE OF DABIGATRAN ETEXILATE2011-11-10Gnad et al.546/273.4
79322733-[(2-{[4-(hexyloxycarbonylaminoiminomethyl) phenylamino]methyl}-1-methyl-1H-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionic acid ethylester methansulfonate and its use as a medicament2011-04-26Schmid et al.
20090042948Physiologically acceptable salts of 3--1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester2009-02-12Sieger et al.
20080317848Oral Dosage Forms for Propiverine or Pharmaceutically Acceptable Salts Thereof Having Prolonged Release of the Active Agent2008-12-25Gramatte et al.
7316819Oral peptide pharmaceutical dosage form and method of production2008-01-08Crotts et al.424/464
7271272Process for preparing 4-aminomethyl-3-alkoxyiminopyrrolidine methanesulfonate2007-09-18Hwang et al.
20070185333Process for the Preparation of 4-(Benzimidazolylmethylamino)-Benzamides and the Salts Thereof2007-08-09Zerban et al.
20070185173Process for the Preparation of the Salts of 4-(Benzimidazolylmethylamino)-Benzamides2007-08-09Zerban et al.
20070149589Process for the Preparation of 4-(benzimidazolylmethylamino)benzamidines2007-06-28Zerban et al.
20070105753USE OF DIPYRIDAMOLE OR MOPIDAMOLE FOR TREATMENT AND PREVENTION OF THROMBO-EMBOLIC DISEASES AND DISORDERS CAUSED BY EXCESSIVE FORMATION OF THROMBIN AND/OR BY ELEVATED EXPRESSION OF THROMBIN RECEPTORS2007-05-10Eisert et al.
7202368Process for the preparation of 4-(benzimidazolymethylamino) benzamidines2007-04-10Zerban et al.
7189743Prodrugs of 1-methyl-2-(4-amidinophenylaminomethyl)-benzimidazol-5-yl-carboxylic acid-(N-2-pyridyl-N-2-hydroxycarbonylethyl)-amide2007-03-13Hauel et al.
20060276513Polymorphs of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H- benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester2006-12-07Hauel et al.
20060247278Physiologically acceptable salts of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester2006-11-02Sieger et al.
20060222640NEW PHARMACEUTICAL COMPOSITIONS FOR TREATMENT OF THROMBOSIS2006-10-05Reilly et al.
20060183779ADMINISTRATION FORM FOR THE ORAL APPLICATION OF 3-[(2-{[4-(HEXYLOXYCARBONYLAMINO-IMINO-METHYL)-PHENYLAMINO]-METHYL}-1-METHYL-1H-BENZIMIDAZOL-5-CARBONYL)-PYRIDIN-2-YL-AMINO]-PROPIONIC ACID ETHYL ESTER AND THE SALTS THEREOF2006-08-17Brauns et al.
7070805Rapidly disintegrable solid preparation2006-07-04Shimizu et al.
200502341043-[(2-{[4-(hexyloxycarbonylaminoiminomethyl)phenylamino]methyl}-1-methyl-1H-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionic acid ethylester methansulfonate and its use as medicament2005-10-20Schmid et al.
6900229Prodrugs of 1-methyl-2-(4-amidinophenylaminomethyl)-benzimidazol-5-yl-carboxylic acid-(N-2-pyridyl-N-2-hydroxycarbonylethyl)-amide2005-05-31Hauel et al.
20050107438Pharmaceutical composition comprising 3-[(2-{[4-(Hexyloxycarbonylaminoiminomethyl) phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester or a salt therefore2005-05-19Radtke et al.
20050095293Administration form for the oral application of poorly soluble drugs2005-05-05Brauns et al.
20050038077Tablet containing 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H- benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethylester or the salts thereof2005-02-17Kohlrausch et al.
20040258749Oral dosage form for propiverine or its pharmaceutically acceptable salts with an extended release of the active ingredient2004-12-23Guldner et al.
6710055Disubstituted bicyclic heterocycles, the preparation thereof, and their use as pharmaceutical compositions2004-03-23Hauel et al.
20030181488Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof2003-09-25Brauns
6620439Chrono delivery formulations and method of use thereof2003-09-16Mehta424/497
20030017203Oral peptide pharmaceutical dosage form and method of production2003-01-23Crotts et al.424/477
20030004181Disubstituted bicyclic heterocycles, the preparation thereof, and their use as pharmaceutical compositions2003-01-02Hauel et al.
6469039Disubstituted bicyclic heterocycles, the preparation and the use thereof as pharmaceutical compositions2002-10-22Hauel et al.514/394
6414008Disubstituted bicyclic heterocycles, the preparation thereof, and their use as pharmaceutical compositions2002-07-02Hauel et al.514/394
6387917Salts of opioid analgesics, particularly morphine, and methods of using same2002-05-14Illum et al.
6309666Pharmaceutical preparation in form of coated capsule releasable at lower part of digestive tract2001-10-30Hatano et al.424/463
20010010825Rapidly disintegrable solid preparation2001-08-02Shimizu et al.
6248770Benzimidazoles having antithrombotic activity2001-06-19Ries et al.514/394
6165507Slow-release pharmaceutical formulations containing mizolastine2000-12-26Chariot et al.
6120802Method of producing multi-layer medicaments in solid form for oral or rectal administration2000-09-19Breitenbach et al.424/464
6087380Disubstituted bicyclic heterocycles, the preparations and the use thereof as pharmaceutical compositions2000-07-11Hauel et al.514/336
6086918Oral peptide pharmaceutical products2000-07-11Stern et al.424/474
6039975Colon targeted delivery system2000-03-21Shah et al.424/473
6015577Pharmaceutical compositions containing dipyridamole or mopidamol and acetylsalicylic acid or the physiologically acceptable salts thereof, processes for preparing them and their use in treating clot formation2000-01-18Eisert et al.424/451
5914132Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery1999-06-22Kelm et al.424/478
5912014Oral salmon calcitonin pharmaceutical products1999-06-15Stern et al.424/474
5800836Pelletized pharmaceutical composition1998-09-01Morella et al.
5783215Pharmaceutical preparation1998-07-21Arwidsson et al.
5705190Controlled release formulation for poorly soluble basic drugs1998-01-06Broad et al.
5670172Pharmaceutical spheroid formulation1997-09-23Buxton et al.424/495
5637320Controlled absorption naproxen formulation for once-daily administration1997-06-10Bourke et al.
5482948Pyridyl derivatives and pharmaceutical compositions comprising these compounds1996-01-09Soyka et al.
5478828Piperazinyl-and piperidinyl-cyclohexanols1995-12-26Mattson et al.
5434150Condensed 5-membered heterocyclic compounds, processes for preparing them and pharmaceutical preparations containing these compounds1995-07-18Austel et al.
5416099Fibrinogen receptor antagonists1995-05-16Hartman et al.514/323
5395626Multilayered controlled release pharmaceutical dosage form1995-03-07Kotwal
5387593Piperazinyl-and piperidinyl-cyclohexanols1995-02-07Mattson et al.
5320853Controlled release formulation for pharmaceutical compounds1994-06-14Noda et al.424/472
5286736Pyridyl compounds and pharmaceutical compositions containing these compounds1994-02-15Soyka et al.
5051262Processes for the preparation of delayed action and programmed release pharmaceutical forms and medicaments obtained thereby1991-09-24Panoz et al.
4999226Pharmaceutical compositions for piperidinoalkanol-ibuprofen combination1991-03-12Schock et al.
4786505Pharmaceutical preparation for oral use1988-11-22Lovgren
4728660Method of treating diseases arising from platelet hyperactivation1988-03-01Haynes et al.514/356
4675405Quinoline compounds as antiallergic and antithrombotic agents1987-06-23Musser et al.
4596705Oral mopidamol preparation1986-06-24Schepky et al.
4572833Method for preparing a pharmaceutical controlled release composition1986-02-25Pedersen et al.
4438091Bromhexine delayed-release pharmaceutical form1984-03-20Gruber et al.424/465
4427648Dipyridamole-containing pharmaceutical form1984-01-24Brickl et al.424/459
4367217Dipyricamole sustained release forms comprising lacquer-coated particles and the preparation thereof1983-01-04Gruber et al.424/494
4361546Retard form of pharmaceuticals with insoluble porous diffusion coatings1982-11-30Stricker et al.
4003909[(1,2,4-Oxadiazol-3-yl)phenyl]carbamic or thiocarbamic acid esters1977-01-18Narayanan et al.
39681118,8-Disubstituted-6-methylergolines and related compounds1976-07-06Bach et al.
3887705Medicaments intended for the prevention and treatment of capillary-venous deficiencies1975-06-03Serre et al.

Foreign References:

CA2256751A11998-02-12COATED TRIMEBUTINE MALEATE TABLET
CA2435492A12002-08-15ANTITHROMBOTIC COMPOUNDS, THE PREPARATION THEREOF AND THEIR USE AS PHARMACEUTICAL COMPOSITIONS
CN103304539September, 2013Dabigatran etexilate malate, and preparation method and application thereof
CN103304539A2013-09-18Dabigatran etexilate malate, and preparation method and application thereof
DE4129603A11993-03-11KONDENSIERTE 5-GLIEDRIGE HETEROCYCLEN, VERFAHREN ZU IHRER HERSTELLUNG UND DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL
DE19752843A11999-07-01Arzneimittelzubereitung in Tabletten- oder Pelletform für Pantoprazol und Omeprazol
DE10245624A12004-04-08Oral pharmaceutical composition comprises the thrombin inhibitor ethyl 3-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-2-pyridylamino)propionate and an organic acid
EP00325621981-07-29DIPYRIDAMOL RETARD-FORMS AND PROCESS FOR THEIR PREPARATION
EP00881911983-09-14POLYESTER FIBREFILL BLEND
EP01088981984-05-23ORAL GALENICAL FORMS OF MOPIDAMOL
EP05400511993-05-05Aromatic amidine derivatives and salts thereof
EP05475171993-06-23Pyridyl derivatives, medicines containing these compounds and processes for their preparation.
EP06235961994-11-09N-acylpyrrolidines or N-acylpiperidines having a guanidinyl- or amidinyl-substituted side chain as thrombin inhibitors.
EP06554391995-05-315,6-Bicyclic glycoprotein IIb IIIa antagonists useful in inhibition of platelet aggregation.
EP09427181999-09-22COATED TRIMEBUTINE MALEATE TABLET
EP1698623June, 2006CRYSTAL OF SALT OF 4-(3-CHLORO-4-(CYCLOPROPYLAMINOCARBONYL)AMINO-PHENOXY)-7-METHOXY-6-QUINOLINECARBOXAMIDE OR OF SOLVATE THEREOF AND PROCESSES FOR PRODUCING THESE
EP18701002007-12-26Ethyl 3-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-2-pyridylamino)propionate methansulfonate
JP58134033August, 1983
JP03112928USeptember, 1989
WO1994003160A11994-02-17PELLETISED PHARMACEUTICAL COMPOSITION
WO1998005320A11998-02-12COATED TRIMEBUTINE MALEATE TABLET
WO1998025601A11998-06-18FIBRINOGEN RECEPTOR ANTAGONISTS
WO1998037075A11998-08-27DISUBSTITUTED BICYCLIC HETEROCYCLES, THEIR PRODUCTION AND USE AS MEDICAMENTS
WO1998056787A11998-12-174-PHENYLPIPERIDINE COMPOUNDS
WO2000013671A12000-03-16IMMEDIATE RELEASE TABLET
WO2000071118A12000-11-30PHOSPHOLIPASE A¿2?-SPECIFIC INHIBITING COMPOUNDS
WO2002034711A12002-05-02BIARYL COMPOUNDS AS SERINE PROTEASE INHIBITORS
WO2003007984A12003-01-30UV CROSS-LINKABLE MELT ADHESIVES CONTAINING STABILIZERS
WO2003030869A12003-04-17ORAL DOSAGE FORM FOR PROPIVERINE OR ITS PHARMACEUTICALLY ACCEPTABLE SALTS WITH AN EXTENDED RELEASE OF THE ACTIVE INGREDIENT
WO2004092129A12004-10-28NEW PROCESS FOR PREPARING 4-AMINOMETHYL-3-ALKOXYIMINOPYRROLIDINE METHANESULFONATE
WO2005090382A12005-09-29ANTITHROMBOTIC COMPOUND
WO2006070878A12006-07-06CARBOXYLIC ACID DERIVATIVE OR SALT THEREOF
WO2011110876A12011-09-15NOVEL SALTS FOR THE MANUFACTURE OF PHARMACEUTICAL COMPOSITIONS
WO2013110567A12013-08-01NOVEL ORALLY ADMINISTERED DABIGATRAN FORMULATION
JPS58134033A1983-08-10

Other References:

Bastin, Richard J. et al. (Organic Process Research and Development 2000, 4, No. 5, 427-435).
Exparte Norbert Hauel, Appeal 2011-010664, U.S. Appl. No. 10/383,198, Technology Center 1600.
Paradaxa (dabigatran etexilate), Dabigatran etexilate mesilate is Ethyl N-{[2-({[4-((E)-amino{[hexyloxy)carbonyl]imino}methyl) phenyl]amino}methyl )-1-methyl-1 H-benzimidazol-5-yl]carbonyl}-N-pyrid in-2-yl-13-alan inate methanesulfonate, Jun. 11, 2013.
Hauel, N. H., “Structure-Based Design of Novel Potent Nonpeptide Thrombin Inhibitors”, J. Med. Chem. 2002, 45, 1757-1766, XP-001098844.
Caira, M. R.: “Crystalline Polymorphism of Organic Compounds”, Topics in Current Chemistry, Bd.198, XP 001156954, pp. 163-208, 1998.
Nagahara, T. et al, “Dibasic (Amidlnoaryl) propancic Acid Derivatives as Novel Blood Coagulation Factyor Xa Inhibitors”, J. Med. Chem. 1994, 37, pp. 1200-1207.
Berkowitz, Scott D., Anthrombotic Therapy after Prosthetic Cardiac Valve Implantation: Potential Novel Antithrombotic Therapies, American Heart Journal, vol. 142, No. 1 pp. 7-13 Results of Expert Meetings, XP-001146897, 2001.
Mungall, Dennis, , BIBR-1048 Boehringer Ingalheim, Current Opinion in Investigational Drugs, 2002 3(6) 905-907-XP-001147306.
Stangier, et al: Abstract of J thrombosis and Haemotosis, vol. 1, Supplement 1, Jul. 12-18, 2003.
Gustafsson, D., Abstract of J. Intern. Med Oct. 2003, 254 (4): 322-34; PMID: 12974871.
Stangier, et al; Abstract of The J. of Clinical Pharmacology, 2005; 45: 555-583.
The Merck Index 14th Edition, Merck & Co., NJ, USA, 2001, No. 9156, 4308, and 845, Ecuador, (Dec. 2006).
Berge, Stephen, M; Pharmaceutical Salts; Journal of Pharmaceutical Sciences; Review Article (1977) vol. 66, No. 1 pp. 1-19.
Non-Final Office Action dated Jun. 29, 2007 from U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Response dated Dec. 31, 2007 from Non-Final Office Action dated Jun. 29, 2007; U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Non-Final Office Action dated Apr. 4, 2008 from U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Response dated Jul. 2, 2008 from Non-Final Office Action dated Apr. 4, 2008; U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Final Office Action dated Dec. 2, 2008 from U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Response dated Mar. 2, 2009 from Non-Final Office Action dated Dec. 2, 2008; U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Non-Final Office Action dated Jun. 26, 2009 from U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Response dated Nov. 27, 2009 from Non-Final Office Action dated Jun. 26, 2009; U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Final Office Action dated Mar. 25, 2010 from U.S. Appl. No. 10/934,140, filed Sep. 3, 2004.
Stassen, “Ex Vivo Anticoagulant Activity of BIBR953ZW, A Novel Synthetic Direct Thrombin Inhibior and of its Prodrug BIBR1048 MS in Different Animal Species,” Supplement to the Journal Thrombosis and Haemostasis, (2001).
Thoma, Aus Dern Institut fur Pharmazie, “Retardation of Weak Basic Drugs”, 1989.
Thoma, Aus Dern Institut fur Pharmazie, “Retardation of Weak basic Drugs, 2nd Comm., Optimization of availability with Papaverine and Codeine in diffusion pellets”, 1989.
Thoma, Aus Dern Institut fur Pharmazie, “Retardation of Weak basic Drugs, 5th Comm., Optimization of availability with Papaverine and Codeine in diffusion pellets”, 1989.
Stangier et al., “Pharmaco*kinetics of BRBR953 ZW, A Novel Low Molecular Weight Direct Thrombin Inhibitor in Healthy Volunteers,” Supplement to the Journal Thrombosis and Haemostasis (2001).
Wienen, Supplement to the Journal Thrombosis and Haemostasis, “Effects of the Direct Thrombin Inhibitor BIBR 9532W and its orally active pro-drug BIBR1048MS on experimentally induced clot formation and template bleeding time in rats”, 2001.
Swarbrick, Encyclopedia of Pharmaceutical Terminology, Third Edition, 2011.
Gould, International Journal of Pharmceutics, “Salt Selection for basic drugs”, 1986.
Streubel, Journal of Controlled Release, “pH and independent release of a weakly based drug from water-insoluble and soluble matrix tablets”, 2000.
Venkatesh, Pharmacetical Development and Technology, “Development of controlled release SK&F 82526-J Buffer Bead Formulations with a Tartaric Acid as the Buffer”, 1998.
Busch, Supplement to the Journal Thrombosis and Haemostasis, “Pharmaco*kinetics of the Synthetic Direct Thrombin Inhibitor BIBR953 ZW in Different Animal Species”, 2001.
Shargel, Applied Biopharmaceutics and Pharmaco*kinetics, 4th Edition, “Physiologic Factors related to Drug Absorption”, 1999.
Shargel, Applied Biopharmaceuticals and Pharmaco*kinetics, “Biopharmaceutic Considerations in Drug Product Design”, 1999.
Rudnic, Remington: The Science and Practice of Pharmacy, “A treatise in the theory and practice of pharmaceutical sciences”, 2000.
Gabr, European Journal Pharmacy, “Effect of Organic Acids on the Release Patterns of Weakly Basic Drugs from Inert Sustained release Matrix Tablets”, 1992.
Racynska, Journal Chem. Society, “Hydrogen Bonding Basicity of Amidines”, 1988.
Streng, Journal of Pharmaceutical Sciences, “General treatment of pH-Solubility Profiles of Weak Acids and Bases and the effects of Different Acids on the Solubility of a weak base”, 1984.
Elder, Wiley Interscience, “The Utility of Sulfonate Salts in Drug Development”, 2010.
Stahl, Handbook of Pharmaceutical Salts, 2002.
Engel, International Journal of Pharmaceutics, “Salt Form Selection and Characterization of LY 333531 Mesylate Monohydrate”, 2000.
Wienen, Supplement to the Journal of Thrombosis and Haemostasis, “Antithrombotic effects of the Direct Thrombin Inhibitor BIBR9532ZW and its orally active Pro-drug BIBR1048MS in a model of venous thrombosis in rabbits”, 2001.
Calcium Nitrate Database, 2014.
Bendelin, Pharmaceutical Dosage Forms, vol. 1, Second Edition, Revised and expanded, p. 1-60, 1989.
Stassen, Supplement to the Journal of Thrombosis and Haemostasis, “Pharmacodynamics of the Synthetic Direct Thrombin Inhibitor BIBR9523ZW in Healthy Subjects”, 2001.
Porter, Remington: The Science and Practice of Pharmacy, 20th Edition, 2000.
Second Declaration of Dr. Sieger, for U.S. Appl. No. 10/383,198, filed Jan. 13, 2014.
Third Declaration for Dr. Sieger, for U.S. Appl. No. 10/383,198, filed Jan. 13, 2014.
Swarbrick, Encyclopedia of Medical terminology, 2011.
Patent Grant in Opposition CN 03805473 dated May 8, 2009.
SIPO Request Acceptance in Opposition CN 03805473 dated Nov. 27, 2012.
Final Post Hearing Statement in Opposition in CN 03805473 dated Mar. 8, 2013.
SIPO decision in Opposition CN 03805473 dated Apr. 27, 2013.
Final Complaint in Opposition in CN 03805473 dated Aug. 14, 2013.
Administrative Answer Brief in Opposition CN 03805473 dated Feb. 24, 2014.
Post Hearing Statement Plaintiff in Opposition CN 03805473 dated Mar. 12, 2014.
Administrative Judgment Hearing-Beijing, in Opposition CN 0380574 dated Mar. 20, 2014.
Opposition Papers for IL 163863 dated Sep. 30, 2013.
Opposition Papers for IL 638863 (2) dated Sep. 30, 2013.
Opposition Papers for IL 209638 dated Feb, 26, 2013.
Opposition Papers for IL 209638 dated May 25, 2015.
International Search Report for PCT/EP03/02141 dated Apr. 29, 2003.
Remington Pharmacia, Gennero R. Alfonso, 19th Edition, Panamericana, 1988, p. 2470.
Rote Liste Fachinformationen: “Drug Information on Pradaxa” http://www.fachinfo.de/data/fi/jsearch?wirkstoff; Jan. 2002.
EMEA, Committee for Veterinary Medicinal products, “Tricaine Mesilate”, 1999.
WHO Drug Information, International Proprietary Names for Pharmaceutical Substances, 2000.
Submission of Patentee, EP09725292, 2011.
Creasey, Chemical Defence Experimental Establishment, “2-Hydroxyiminomethyl-N-Methylpyridinium Methanesulphonate (P2S), an antidote to Organphosphrous Poisoning, its preparation, estimation and stability”, 1959.
Technical Data, filed by the patentee in the examination procedure as annex wiht the written submission og Mar. 28, 2011, EP07115663, “Solubility of BIBR 1048 Salts in Water”, 2011.
WHO Drug Infomation, International Proprietary names for Pharmaceutical Substances, vol. 16, No. 2, 2002.
Full Prescribing Information for Pradaxa, 2011.
Russell, et al., Pharmaceutical Research, “pH-related changes in the Absorption of Dipyridamole in the Elderly”, 1994, vol. 11, No. 1, p. 136-143.
IUPAC-Gold Book, Definition of Solubility, 2013.
IUPAC-Gold Book, definition of saturated solution, 2013.
Experimental Report, Crystallinity and Stability Tests of Dabigatran Etexilate Salts, 2012, p. 1-3.
Pradaxa 2013, p. 1-37.
Anvisa, National Health Surveillance Agenxy, technical note No. 003/2013/CEFAR/CEFAR/GGHED/ANVISA p. 1-5.
Certificate District Court Mainz (2010).
Guthier, Can. J. Chem, “Hydrolysis of esters of oxy acids:pK values for strong acids; Bronsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20pK units”, 56, 1978, p. 2342-2354.
Translation of Interlocutory Decision of Opposition of EP 1489054 dated Jul. 3, 2014. (1).
Chemistry Review for NDA 22-512, Pradaxa Capsules, US Food and Drug Administration (FDA) (2010).
Response to Second Office Action in Opposition CN03805473 dated Jul. 23, 2008.
Response to First Office Action in Opposition CN 03805473 dated May 25, 2006.
Opponent Submission of Opposition of EP 1489054 dated Jul. 22, 2014.
Translation of Interlocutory Decision of Opposition of EP 1489054 dated Jul. 3, 2014 (2).
Notice of Opposition in EP 1870100 dated Nov. 1, 2012.
Second Notice of Opposition in EP 1870100, dated Oct. 2, 2012.
Patentee Reply in Opposition in EP 1870100, dated Jun. 7, 2013.
NPL data in Opposition in EP 1870100 dated Dec. 20, 2013.
Patentee Written Submission in Opposition in EP 1870100 dated Jan. 10, 2014.
Patentee Written Submission in opposition in EP 1870100 dated Jan. 13, 2014.
Opponent Written Submission for Opposition in EP 1870100 dated Jan. 24, 20134.
Opponent Written Submission in Opposition in EP 1870100 dated Jan. 28, 2014.
Patentee Written Submission in Opposition EP 1870100 dated Mar. 20, 2014.
Opposition Results for EP1870100 dated Mar. 28, 2014.
Patentee Reply in Oppostion in EP 1485094 dated Mar. 27, 2013.
Notice of Opposition for Opposition in EP 1485094 dated Mar. 27, 2013.
Second Notice of Opposition for Opposition in EP 1485094 dated Apr. 3, 2013.
Opposition Results for EP 1485094 dated Apr. 4, 2014.
Notice of Appeal in Opposition of EP 1485094 dated Jul. 2, 2014.
International Search Report for PCT/EP 0302141 dated Apr. 29, 2003.
WHO Drug Information, INN List 46, 2001, vol. 15, No. 3 and 4.
EMEA, CHMP Assessment Report for Pradaxa 2008, pp. 6 and 7.
International Search Report for PCT/EP0302184 dated Aug. 12, 2003.
Allinger, excerpt from Organic Chemistry, 1980, p. Title Page plus p. 816-817.
Roempp, excerpt from Pharmaceutical Dictionary, 1986, p. title page plus p. 152-155; 3694-3697.
Burger, excerpt from Pharmaceutical Dictionary, 8th Edition, 1998, p. title page plus p. 497-498.
Foroughifar, Can. J. Chem, “Basicity of substituted 2-pyridy1-1,1,3,3-tetramethylguanidines and aminopyrimidines in acetonitrile and water solvents”, downloaded from www.nrcresearchpress.com, retrieved online from Ingelheim Hosting site on Nov. 20, 2013, 1992.
Prosecution Papers for JP3866715 dated Apr. 28, 2006.
Prosecution Papers for JP3866715 dated Mar. 5, 2010.
Prosecution Papers for JP386615 dated 2008.
Luche, excerpt from Synthetic Organic Chemistry,1998, p. title page plus p. XX.
Shargel, Applied Biopharmaceutics and Pharmaco*kinetics, “Biopharmacetic Considerations in Drug Product in Drug Product in Drug Product Design” 4th Edition, p. 13-14, 1999.
Solvias, Experimental Report, “Dabigatran Extexilate Salt formation and Solubility Measurements” p. 1-55, 2014.
Reiser, Declaration of Technical Expert, “Dabigatran extexilate and its salts to be formulated in a special pharmaceutical composition” p. 1-12, 2014.
Badawy, International Journal of Pharmaceuticals, 223, “Effect of salt form on chemical stability of an ester prodrug of a glycoprotein b/IIIa receptor antagonist in solid dosage forms” p. 81-87, 2001.
Solvias AG, HPLZ analytics by Solvias of tartrate salt sample SP220-LTA-P1, dated Jul. 24, 2014.
European Medicines Agency, CHMP assessment report for Pradaxa, dabigatran etexilate, 2008. p. 1-36.
Badawy, International Journal of Pharmaceutics, 223, “Effect of Salt form on chemical stability of an ester prodrug of a glycoprotein b/IIIa receptor antagonist in solid dosage forms”, p. 81-87, 2001.
China Pharmacist, 2008, vol. 11, p. 523-529.
Dalton and Yates, Encyclopedia of Pharmaceutical Technology, “Bioavailability of drugs an Bioequivalence in Swarbrick”, 3rd Edition, 2007, p. 1012-1022.
European Medicines Agency, CHMP assessment report for Pradaxa, 2008, p. 1-36.
European Pharmacopoeia, 4th Edition, 2002, p. 1.
Excerpt from CHMP Assessment report for Pradaxa, 2015, p. 7, p. 16.
Experimental Report, Stability of the claimed Dabigatran etexilate formulation, p. 1-4, 2014.
Harmsen, et al., Mol. Immunol. 2000 Aug. 2007 (10) 579-90.
International Journal of Pharmaceutical research, 1978, No. 3, p. 145-152.
Janeway, Immunology, 3rd Ed., 1997, Garland Press, pp. 3:1-3:11.
Koskimies, et al., Int. J. Clin. Pharmacol. Ther. vol. 51, No. 10, 2013, “Oral Bioavailability of ospemifene improves with food intake”, p. 787-794.
Notice of Opposition, dated Apr. 3, 2013.
Patent Proprietor's Submissions in opposition proceedings relating to EU patent 1870100, Jun. 7, 2013.
Paul, Fundamental Immunology, 3rd Ed., 1993, p. 242.
Pharmacopoeia of the People's republic of China, Industrial Press, vol. II, 2000, No. 3 Appendix XIXC: Guidelines for Chemical Drug Stability, cover page, copyright page, 6 pages, 2015.
Pharmacy, The People's Medical Publishing House, 1999, p. 13-29.
Pharmacy, The People's medical Publishing house, 5th Edition, 2004, p. 223.
Portolano, et al., Immonol., 1993, 150:880-887.
Progress in Pharmaceutical Science, 2012, vol. 36, p. 151-157.
Reiser, Declaration of Technical Expert, “Dabigatran etexilate and its Salts to be formulated in a special pharmaceutical composition”, p. 1-12, 2014.
Rudikoff, et al, Proc Natl Acad Sci USA, 1982, 79:1979-1983.
Shargel, Applied Biopharmaceutics and Pharmaco*kinetics, “Biopharmaceutic Considerations in Drug Product Design”, 4th Edition, p. 13-14, 1999.
Solubility data of dabigatran etexilate free base and different salts thereof, 2015.
Solvias AG, Experimental Report, “Dabigatran Extexilate Salt Formation and Solubility Measurements”, p. 1-55, 2014.
Solvias AG, HPLZ analytics by Solvias of tartrrate salt sample SP-220-LTA-P1, Opposiiton papers, dated Oct. 4, 2011.
Stumpp, et al., Drug Discovery Today, 2008, 13(15-16):695-701 doi:10.1016/j.drudis.2008.04.013 EPUB 2008.
Third Party Observation for Application No. EP20070115663, “Ethyl 3-(2-(4-hexyloxycarbonylamidino) phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-2-pyridylamino)propionate methansulfonate.” 2016.
Trillo, Professor C. Fauli “Discussion of Galenic Pharmacy.” Luzan 5, 1993, pp. 83-84.
Cater et al., “The Clinical Importance of Hypochlorhydria (A Consequence of Chronic Helicobacter Infection): Its Possible Etiological Role in Mineral and Amino Acid Malabsorption, Depression, and Other Syndromes”, Medical Hypotheses, 1992, vol. 39, pp. 375-383.
Chin et al., “Effects of an Acidic Beverage (Coca-Cola) on Absorption of Ketoconazole”, Antimicrobial Agents and Cfiemotiierapy, Aug. 1995, vol. 39, No. 8, pp. 1671-1675.
Clayden, et al., “Organic Chemistry.” Oxford University Press, 2001, pp. 202 and 286.
Dotherty et al., “Microenvironmental pH control of drug dis solution”, International Journal of Pharmaceutics, 1989, col. 50, pp. 223-232.
DrugBank: Aniline, Accession No. DB06728, 2010, pp. 1-7.
DrugBank: Benzamidine, Accession No. DB03127 (EXPT00669), 2005, pp. 1-10.
Eisert et al., “Dabigatran: An Oral Novel Potent Reversible Nonpeptide Inhibitor of Thrombin”, Arterioscler Thromb Vasc Biol., Jul. 29, 2010, 30:1885-1889.
EMA, Summary of Product Characteristics for Pradaxa 75mg, Annex I, 2008, pp. 1-23.
Fauli et al., Tratado de Farmacia Galència, Luzàn 5, 1993, pp. 83-84.
Gomes-Outes et al., “Discovery of Anticoagulant Drugs: A Historical. Perpspective ”, Current Drug Discovery Technologies, 2012, 83-104.
Harter et al., “Anticoagulation Drug Therapy: A review”, Western Journal Emergy Medicine, Jan. 2015, vol. XVI No. 1.
Himmelsbach et al., “Design of Highly Potent Nonpeptidic Fibrinogen Receptor Antagonists”, pp. 243-254.
Joule, J.A. et al., “Heterocycles containing more than two hetero atoms.” Heterocyclic Chemistry, Fourth Edition, 2000, p. 513.
Keenan, Richard M. et al., “Conformational Preferences in a Benzodiazepine Series of Potent Nonpeptide Fibrinogen Receptor Antagonists.” Journal of Medical Chemistry, 1999, vol. 42, pp. 545-559.
Knapp et al., “Modification of gastric pH with oral glutamic acid hydrochloride”, Clinical Pharmacy, Research, vol. 10, Nov. 1991, pp. 866-869.
Kocienski, Philip J., “Protecting Groups.” University of Leeds, 3rd Edition, 2005, p. 517.
Müller et al., “Profound and Sustained Inhibition of Platelet Aggregation by Fradafiban, a Nonpeptide Platelet Glycoprotein I Ib/IIIa Antagonist, and Its Orally Active Prodrug, Lefradafiban, in Men”, Circulation Articles, 1997, vol. 96, pp. 1130-1138.
Repic, Oljan Ph.D., “Principles of Process Research and Chemical Development in the Pharmaceutical Industry.” Sandoz Pharmaceuticals Corporation, 1988, pp. 10-13.
Slanger et al., “Management of gastric achlorhydria and Hypochlorhydria”, Geriatrxcs, Aug. 1966, pp. 193-198.
Stangier, J. et al., “Pharmacology, Pharmaco*kinetics, and Pharmacodynamics of Dabigatran Etexilate, an Oral Direct Thrombin Inhibitor.” Clinical and Applied Thrombosis/Hemostasis, 2009, vol. 15, No. 1S, pp. 9S-16S.
Thoma et al., “Retardation of weakly basic drugs with diffusion tablets”, International Journal of Pharmaceutics, 1990, vol. 58, pp. 197-202.
Thoma et al., “The pH-independent release of fenoldopam from pellets with insoluble film coats1”, European Journal of Pharmaceutics and Biopharmaceutics, 1998, vol. 46, pp. 105-113.
Wangs et al., “Effect of food and gastric acidity on absorption of orally administered ketoconazole”, Clinical Pharmacy, Research Ketoconazole, 1988, vol. 7, pp. 228-235.
Weller at al., “Orally Active Fibrinogen Receptor Antagonists. 2. Amidoximes as Prodrugs of Amidines”, Journal of Medicinal Chemistry, 1996, vol. 39, No. 16, pp. 3139-3147.
Gennaro, Alfonso, R.; Remington Farmacia 19th Edition, Panamericana Espana 1988, p. 2470, Ecuador (Dec. 2006).
Prosecution Papers for JP 3866715 dated Apr. 28, 2008.
Prosecution Papers for JP 3866715 dated 2008.
Prosecution Papers for JP 3866715 dated Mar. 5, 2010.

Primary Examiner:

QAZI, SABIHA NAIM

Attorney, Agent or Firm:

C/O VP, IP, LEGAL (RIDGEFIELD, CT, US)

Parent Case Data:

This application is a continuation of pending U.S. application Ser. No. 10/383,198, which claims benefit of U.S. Provisional Application No. 60/421,896, filed on Oct. 29, 2002 and U.S. Provisional Application No. 60/409,762, filed on Sep. 11, 2002, the contents of which are herein incorporated by reference.

Claims:

I claim:

1.

A pharmaceutical composition for oral administration comprising:(a) a substantially spherical core material comprised of one or more pharmaceutically acceptable organic acids with a water solubility of >1 g / 250 mL at 20° C.; and(b) an active substance layer containing one or more binders and optionally a separating agent, wherein said active substance is ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate mesylate;(c) an insulating layer separating said core material and active substance layer, wherein said insulating layer is comprised of a water-soluble polymer, optionally with addition of suitable plasticizers, separating agents and pigments; and(d) an optional coating layer enclosing the active substance layer, wherein the pharmaceutical composition provides a patient with the active substance having a bioavailability that is therapeutically effective at normal and elevated gastric pH.

2.

The pharmaceutical composition of claim 1, wherein the acceptable organic acid has a water solubility of > 1 g/160 mL at 25° C.

3.

Pharmaceutical composition according to claim 1, wherein the pharmaceutically acceptable organic acid is selected from the group consisting of tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid, aspartic acid and any combination thereof.

4.

Pharmaceutical composition according to claim 1, wherein the pharmaceutically acceptable organic acid is selected from the group consisting of tartaric acid, fumaric acid, citric acid, succinic acid and any combination thereof.

5.

Pharmaceutical composition according to claim 1, wherein the pharmaceutically acceptable organic acid is tartaric acid.

6.

Pharmaceutical composition according to claim 1, wherein the content of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate mesylate in the pharmaceutical composition is 5 to 60%.

7.

Pharmaceutical composition according to claim 1, wherein the content of pharmaceutically acceptable organic acid is 20 to 90%.

8.

Pharmaceutical composition according to claim 1, wherein said binder is selected from the group consisting of hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, the polyvinylpyrrolidones, the copolymers of N-vinylpyrrolidone, vinyl acetate and any combination thereof.

9.

Pharmaceutical composition according to claim 1, wherein said core material has an average particle size of 0.4 to 1.5 mm.

10.

Pharmaceutical composition according to claim 1, wherein said water-soluble polymer is comprised of gum arabic or hydroxypropylmethylcellulose (HPMC).

11.

Pharmaceutical composition according to claim 1, wherein said water-soluble polymer is comprised of a partially or totally synthetic polymer selected from the group consisting of hydroxypropylcelluloses, hydroxypropyl-methylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, the polyvinylpyrrolidones, the copolymers of N-vinylpyrrolidone, vinyl acetate, and any combination thereof.

12.

Pharmaceutical composition according to claim 1, wherein the composition containing the active substance is packed into hard capsules.

13.

Pharmaceutical composition of claim 12, wherein the hard capsule is hydroxypropylmethylcellulose (HPMC).

14.

Pharmaceutical composition of claim 1, wherein the pharmaceutically acceptable organic acid is tartaric acid.

15.

The pharmaceutical composition according to claim 1, wherein the core material consists of tartaric acid and gum arabic, the insulating layer consists of gum Arabic or hydroxypropylmethylcellulose and talc and the active substance layer consists of talc, hydroxypropylcellulose and ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate mesylate.

16.

The pharmaceutical composition according to claim 15, wherein the tartaric acid in the core material is present in the composition at about 61.3%, the gum arabic in the core material is present in the composition at about 3.1%, the gum arabic in the insulating layer is present in the composition at about 2.8%, the talc in the insulating layer is present in the composition at about 5.6%, the talc in the active substance layer is present in the composition at about 3.2%, the hydroxypropylcellulose in the active substance layer is present in the composition at about 4.0% and the ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate mesylate in the active substance layer is present in the composition at about 20%.

17.

The pharmaceutical composition according to claim 15, wherein the tartaric acid in the core material is present in the composition at about 38.5%, the gum arabic in the core material is present in the composition at about 1.9%, the gum arabic in the insulating layer is present in the composition at about 1.7%, the talc in the insulating layer is present in the composition at about 3.5%, the talc in the active substance layer is present in the composition at about 6.4%, the hydroxypropylcellulose in the active substance layer is present in the composition at about 8.0% and the ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate mesylate in the active substance layer is present in the composition at about 40%.

18.

The pharmaceutical composition of claim 1, wherein the active substance layer contains from 50 mg to 200 mg of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate.

19.

The pharmaceutical composition of claim 1, wherein the active substance layer contains from 75 mg to 150 mg of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate.

20.

The pharmaceutical composition of claim 1, wherein the active substance layer contains 150 mg of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl) -phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate.

Description:

This application is a continuation of pending U.S. application Ser. No. 10/383,198, which claims benefit of U.S. Provisional Application No. 60/421,896, filed on Oct. 29, 2002 and U.S. Provisional Application No. 60/409,762, filed on Sep. 11, 2002, the contents of which are herein incorporated by reference.

The invention relates to administration forms for oral applications of prodrugs and in particular prodrugs of the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof.

The invention relates to an administration form for the oral application of the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof. This active substance having the chemical formula

is already known from WO 98/37075, which discloses compounds with a thrombin-inhibiting effect and the effect of prolonging the thrombin time, under the name 1-methyl-2-[N-[4-(N-n-hexyloxycarbonylamidino)phenyl]-amino-methyl]-benzimidazole-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2-ethoxycarbonylethyl)-amides. The compound of formula I is a double prodrug of the compound

i.e. the compound of formula I is only converted into the active compound, namely the compound of formula II, after entering the body. The main indication for the compound of chemical formula I is the post-operative prevention of deep-vein thrombosis.

FIG. 1 shows a schematic structure of the pharmaceutical composition.

FIG. 2 shows the bioavailability of BIBR 1048.

The aim of the invention is to provide an improved formulation for oral use of the compound of formula I (which is also referred to hereinafter as the “active substance”).

Surprisingly it has now been found that the use of pharmaceutically acceptable organic acids with a water solubility of >1 g/250 ml at 20° C., preferably >1 g/160 ml at 25° C., in solid oral preparations leads to a significantly improved formulation of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate as well as the pharmaceutically acceptable salts thereof.

Pharmaceutically suitable acids for the purposes of this invention are for example tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid and aspartic acid including the hydrates and acid salts thereof. Particularly suitable for the purposes of this invention are tartaric acid, fumaric acid, succinic acid and citric acid.

A preferred embodiment of the invention is a multiparticulate preparation in which the individual particles are constructed as in FIG. 1.

FIG. 1 shows the diagrammatic structure of the pharmaceutical composition by means of a section through a pellet suitable for the preparation of the pharmaceutical composition according to the invention. The roughly bead-shaped/spherical core region of this pellet contains/consists of the pharmaceutically acceptable organic acid. Then follows a layer, the so-called insulating layer, which separates the acid core from the layer containing the active substance. The insulating layer is in turn surrounded by the equally spherically shaped layer of active substance which may in turn be enclosed in a coating which increases the abrasion resistance and shelf life of the pellets.

One advantage of the formulation thus constructed is the spatial separation of the organic acid and active substance by the insulating layer. A further advantage of the construction of the pellets as described above is the fact that the organic acid does not go into solution until after the preparation has been taken and then produces an acid microclimate in which the active substance can dissolve.

The core material used is a pharmaceutically acceptable organic acid with a water solubility of >1 g/250 ml at 20° C., such as e.g. tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid and aspartic acid including the hydrates and acid salts thereof, to which a small amount of 1 to 10% by weight, preferably 3 to 6% by weight of a suitable binder is optionally added. The use of a binder may be necessary, for example, if the starting acids are produced by a pan build-up process. If the method used is extrusion or spheronisation, other technological adjuvants such as microcrystalline cellulose will be needed instead of binders. It is also possible to use pure (100%) acid as the starting material if it can be obtained in a sufficiently narrow range of particle sizes. The pharmaceutically acceptable organic acids used are preferably tartaric acid, fumaric acid, succinic acid or citric acid; tartaric acid is particularly preferred. As binder, it is possible to use gum arabic or a partially or totally synthetic polymer selected from among the hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, polyvinyl-pyrrolidone, the copolymers of N-vinylpyrrolidone and vinyl acetate, or combinations of these polymers; gum arabic is preferred. The spherical core material preferably has an average diameter of 0.4-1.5 mm. The content of the pharmaceutically acceptable organic acid is usually between 30 and 100% in the core material, corresponding to an amount of between 20 and 90%, preferably between 20 and 80% in the finished pellet (i.e. in the pharmaceutical composition).

To increase the durability of the finished product it is advantageous to coat the core material before the application of the active substance with an insulating layer based on a water-soluble, pharmaceutically acceptable polymer. Examples of such water-soluble polymers include for example gum arabic or a partially or totally synthetic polymer selected from among the hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, polyvinylpyrrolidone, the copolymers of N-vinylpyrrolidone and vinyl acetate, or combinations of these polymers. Gum arabic or a hydroxypropylmethylcellulose is preferably used. If desired, the coating with the water-soluble, pharmaceutically acceptable polymer may be carried out with the addition of suitable plasticisers, separating agents and pigments, such as for example triethylcitrate, tributylcitrate, triacetin, polyethyleneglycols (plasticisers), talc, silicic acid (separating agents), titanium dioxide or iron oxide pigments (pigments).

The active substance layer contains the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate (BIBR 1048) or one of the pharmaceutically acceptable salts thereof as well as binders and optionally separating agents. A preferred salt of the active substance is the mesylate (methanesulphonate) of the compound of formula I. Suitable binders include for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate or combinations of these polymers. Preferably, hydroxypropylcellulose or copolymers of N-vinylpyrrolidone and vinyl acetate are used. The addition of separating agents such as e.g. talc or silicic acid serves to prevent the particles from aggregating during the process. The active substance content is 5 to 60%, preferably 10 to 50% of the pharmaceutical composition.

The optional outermost layer, which serves to reduce any increased abrasion during packing into capsules and/or to increase the shelf life, consists of pharmaceutically conventional film-forming agents, plasticisers and optionally pigments. Suitable film-forming agents include for example hydroxypropyl-cellulose, hydroxypropylmethylcellulose, methylcellulose, polymers and copolymers of acrylic and methacrylic acid and the esters thereof, or combinations of these polymers. Suitable plasticisers include inter alia triethylcitrate, tributylcitrate, triacetin or polyethyleneglycols. The pigments used may be e.g. titanium dioxide or iron oxide pigments. Preferably, the outer coating consists of hydroxypropylmethylcellulose and/or methylcellulose, optionally with the addition of polyethyleneglycols as plasticisers.

The pellets may be prepared by the method described hereinafter:

The acid-containing core material consists either of crystals of the particular organic acid used or, more advantageously, of roughly spherical particles of the desired size containing a large amount of organic acid, which can be produced by methods known and established in pharmaceutical technology. The core material may be produced, in particular, by pan methods, on pelleting plates or by extrusion/spheronisation. Then the core material thus obtained may be divided into fractions of the desired diameter by screening. Suitable core material has an average diameter of 0.4 to 1.5 mm, preferably 0.6 to 0.8 mm.

First, the insulating layer is applied to this acid-containing core material. This can be done by conventional methods, e.g. by applying an aqueous dispersion of the water-soluble, pharmaceutically acceptable polymer, optionally with the addition of plasticisers, separating agents and/or pigments, in a fluidised bed, in coating pans or in conventional film coating apparatus. If necessary the product can then be screened again.

Then the active substance is applied from a dispersion containing binder and optionally separating agent. The volatile dispersant is removed during or after the process by drying. Suitable binders in the dispersion may be for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate or combinations of these polymers. Preferably, hydroxypropylcellulose or copolymers of N-vinylpyrrolidone and vinyl acetate are used. Suitable separating agents include e.g. talc or silicic acid; preferably, talc is used. The dispersants may be for example ethanol, 2-propanol, acetone or mixtures of these solvents with one another or with water, preferably 2-propanol. The application of active substance to the core material may be carried out by established methods known in pharmaceutical technology, e.g. in coating pans, conventional film coating apparatus or by the fluidised bed method. Then a further screening process may be carried out.

To reduce any increased abrasion during transfer into capsules or to increase the shelf life the system may finally be coated with a coating of a pharmaceutically conventional film forming agent, plasticiser and optionally pigment. This may be done by conventional methods as mentioned earlier in the description of the application of the insulating layer.

When core material with an average diameter of 0.4-1.5 mm is used, the process described above produces pellets containing active substance, which can then be packed into hard capsules, for example. To do this, a number of these units corresponding to the required dosage are packed into hard capsules in a standard capsule filling machine. Suitable hard capsules include, for example, hard gelatine capsules or hard capsules of hydroxypropylmethylcellulose (HPMC); HPMC capsules are preferred. The active substance content of the pharmaceutical composition is 5 to 60%, preferably 10 to 50%; the content of the pharmaceutically acceptable organic acid is usually between 20 and 90%, preferably between 20 and 80%.

Unless otherwise stated, percentages specified are always percent by weight. All the data on the active substance content relate to the active substance base of formula I (not to a specific salt) unless otherwise stated.

Clinical Trials

In preliminary tests on test subjects with conventional tablets containing the compound of formula I it had been established that highly variable plasma levels occurred, with individual cases of malabsorption. The variability of the plasma level patterns is significantly lower after the administration of the compound of formula I as an orally administered solution; there were no cases of malabsorption under these circ*mstances.

Tests have shown that the compound of formula I dissolves relatively well in water at low pH levels, whereas at pH levels above 5 in accordance with the definition of the European Pharmacopoeia it is virtually insoluble. Therefore the volunteers in one branch of the clinical trials were given pantoprazole, which serves to produce an elevated gastric pH.

For example, the pharmaceutical compositions according to Examples 1 and 2 were tested for their bioavailability by comparison with a conventional tablet. To do this, the formulation prepared according to Example 1 containing 50 mg of active substance base per capsule was clinically tested for its bioavailability on a total of 15 volunteers. In one branch of the treatment, the volunteers were given the composition by mouth (=orally) on an empty stomach without any pre-treatment. In another branch of the treatment the same volunteers were pre-treated, prior to the oral administration of the composition, with 40 mg of pantoprazole b.i.d. (=twice a day) for three days by mouth to increase the gastric pH; the treatment with pantoprazole was continued during the administration of the formulation according to the invention.

The degree of absorption was determined by measuring the quantity of active metabolite of formula II excreted in the urine.

The relative bioavailability after pre-treatment with pantoprazole was 94% on average compared with administration without any pre-treatment.

Under comparable conditions of administration, the relative bioavailability (based on the area under the plasma concentration/time curve) of a tablet containing 50 mg of active substance, developed and produced according to the prior art and containing no water-soluble organic acid, after corresponding pre-treatment with pantoprazole, is 18%. Table I shows the precise composition of the tablet used:

TABLE I
Ingredientmg/tablet
Coremesylate of the compound of form. I57.7
lactose monohydrate58.0
microcrystalline cellulose48.3
crospovidone3.4
magnesium stearate2.6
Film coatingpolyethyleneglycol 60000.56
titanium dioxide0.80
talc0.64
hydroxypropylmethylcellulose1.92
iron oxide yellow0.08
Total174.0

The relative bioavailability was thus improved by about a factor of 5 by using the formulation according to the invention.

The formulation prepared according to Example 2 containing 50 mg of active substance base per capsule was also clinically tested for its bioavailability on a total of 15 volunteers. In one branch of the treatment, the volunteers were given the composition by mouth on an empty stomach without any pre-treatment. In another branch of the treatment the same volunteers were pre-treated, prior to the oral administration of the composition, with 40 mg of pantoprazole b.i.d. for three days by mouth to increase the gastric pH; the treatment with pantoprazole was continued during the administration of the formulation according to the invention.

The degree of absorption was determined by measuring the quantity of the active metabolite of formula II excreted in the urine.

The relative bioavailability after pre-treatment with pantoprazole was 76% on average compared with administration without any pre-treatment.

Under comparable conditions of administration, the relative bioavailability (based on the area under the plasma concentration/time curve) of a tablet containing 50 mg of active substance, developed and produced according to the prior art and containing no water-soluble organic acid, after corresponding pre-treatment with pantoprazole, is 18%. Table II shows the precise composition of the tablet used:

TABLE II
Ingredientmg/tablet
Coremesylate of the compound of form. I57.7
lactose monohydrate58.0
microcrystalline cellulose48.3
crospovidone3.4
magnesium stearate2.6
Film coatingpolyethyleneglycol 60000.56
titanium dioxide0.80
talc0.64
hydroxypropylmethylcellulose1.92
iron oxide yellow0.08
Total174.0

The relative bioavailability of the active substance compared with conventional formulations was thus improved by about a factor of 4 by using the formulation according to the invention. The bioavailability of the two formulations according to the invention compared with the tablet described above with and without the simultaneous administration of pantoprazole is graphically illustrated in FIG. 2.

The clinical trials show another advantage of the preparation according to the invention containing the compound of formula I, which is that it ensures adequate bioavailability of the active substance, better than that of a conventional pharmaceutical preparation and largely independent of the gastric pH, it reduces fluctuations in the bioavailability of the active substance and it prevents malabsorption. Another advantageous property of the pharmaceutical composition according to the invention is the fact that it is suitable for all patients, i.e. including those in whom the gastric pH is increased by normal physiological variability, by disease or by co-medication with drugs which raise the gastric pH.

The dosage for oral use is expediently 25 to 300 mg of the active substance base (per capsule), preferably 50 to 200 mg, most preferably 75 to 150 mg of the active substance base, in each case once or twice a day.

The preferred ratio of acid to active substance is about 0.9:1 to about 4:1, most preferably between about 1:1 and 3:1. Preferably, at least one equivalent of acid is used per mol of the compound of formula I. The upper limit of about 4:1 (acid to active substance) is generally determined by the maximum acceptable size of the preparation in the desired dosages (number of pellets per capsule).

The Examples that follow are intended to illustrate the invention:

percentage composition
activeperper
coreinsulatingsubstancecapsulecapsule
materiallayerlayertotal[mg][mg]
tartaric acid61.361.3176.7353.4
gum arabic 3.12.85.917.034.0
talc5.63.28.825.450.7
hydroxypropylcellulose4.04.011.523.1
active substance20.0 20.057.7*115.3**
(mesylate of the compound
of formula I)
total100.0288.3576.5
*corresponds to 50 mg of the compound of formula 1 (active substance base)
**corresponds to 100 mg of the compound of formula 1 (active substance base)

a) Production of Core Material Containing Tartaric Acid
Composition:

gum arabic1part by weight
tartaric acid20parts by weight

1 part by weight of gum arabic is dissolved In 4 parts by weight of purified water at 50° C. with stirring. Then 5 parts by weight of tartaric acid are dissolved in this solution with stirring.

8.3 parts by weight of tartaric acid crystals with an average particle size of 0.4 to 0.6 mm are placed in a suitable coating apparatus fitted with an air inlet and exhaust, and the pan is set in rotation. At an air inlet temperature of 60°-80° C. the tartaric acid crystals are sprayed at intervals with the solution of tartaric acid and gum arabic and sprinkled with a total of 6.7 parts by weight of powdered tartaric acid, so that roughly spherical particles are formed.

The spherical tartaric acid core material is then dried in the rotating pan at an air inlet temperature of 60°-80° C.

The core material is fractionated using a tumbler screening machine with perforated plates with a nominal mesh size of 0.6 and 0.8 mm. The product fraction between 0.6 and 0.8 mm is used in the rest of the process.

b) Insulation of the Core Material Containing Tartaric Acid

Composition:

core material containing tartaric acid23parts by weight
gum arabic1part by weight
talc2parts by weight

1 part by weight of gum arabic is dissolved in a mixture of 6.7 parts by weight of 96% ethanol and 13.5 parts by weight of purified water with stirring. Then 2 parts by weight of talc are dispersed in the solution with stirring.

In a fluidised bed processing apparatus, 23 parts by weight of core material containing tartaric acid are sprayed at an air inlet temperature of 35°-40° C. with the dispersion of gum arabic and talc by the under-bed spraying process.

The insulated core material containing tartaric acid is then dried in the circulating air drier at 40° C. for 8 hours.

To remove any lumps the dried insulated core material containing tartaric acid is screened through a screen with a nominal mesh size of 1.0 mm. The fraction of material with a particle size of <1 mm is further processed.

c) Production of the Active Substance Layer

Composition:

insulated core material containing tartaric acid91 parts by weight
hydroxypropylcellulose 5 parts by weight
talc 4 parts by weight
active substance (mesylate of BIBR 1048)25 parts by weight

Hydroxypropylcellulose is dissolved in 168 parts by weight of 2-propanol with stirring and then the active substance and talc are dispersed in this solution with stirring.

In a fluidised bed processing apparatus, 91 parts by weight of insulated core material containing tartaric acid are sprayed at an air inlet temperature of 20°-30° C. with the dispersion containing the active substance by the under-bed spraying process.

The pellets containing the active substance are then dried in the circulating air drier at 35° C. for 8 hours.

To remove any lumps the pellets containing the active substance are screened through a screen with a nominal mesh size of 1.25 mm. The fraction of material with a particle size of <1.25 mm is further processed.

d) Packing Into Capsules

A quantity of active substance pellets containing in each case 50 or 100 mg of active substance base is packed into size 1 or size 0 elongated hard gelatine capsules or HPMC capsules by means of a capsule filling machine.

percentage composition
activeperper
coreinsulatingsubstancecapsulecapsule
materiallayerlayertotal[mg][mg]
tartaric acid38.538.555.5166.5
gum arabic 1.91.73.65.215.6
talc3.56.49.914.342.8
hydroxypropylcellulose8.08.011.534.6
active substance40.0 40.057.7*173.0**
(mesylate of
the compound of formula I)
total100.0144.2432.5
*corresponds to 50 mg of the compound of formula 1 (active substance base)
**corresponds to 150 mg of the compound of formula 1 (active substance base)

a) Production of Core Material Containing Tartaric Acid
Composition:

gum arabic1part by weight
tartaric acid20parts by weight

1 part by weight of gum arabic is dissolved in 4 parts by weight of purified water at 50° C. with stirring. Then 5 parts by weight of tartaric acid are dissolved in this solution with stirring.

8.3 parts by weight of tartaric acid crystals with an average particle size of 0.4 to 0.6 mm are placed in a suitable coating apparatus fitted with an air inlet and exhaust, and the pan is set in rotation. At an air inlet temperature of 60°-80° C. the tartaric acid crystals are sprayed at intervals with the solution of tartaric acid and gum arabic and sprinkled with a total of 6.7 parts by weight of powdered tartaric acid, so that roughly spherical particles are formed.

The spherical tartaric acid core material is then dried in the rotating pan at an air inlet temperature of 60°-80° C.

The core material is fractionated using a tumbler screening machine with perforated plates with a nominal mesh size of 0.6 and 0.8 mm. The product fraction between 0.6 and 0.8 mm is used in the rest of the process.

b) Insulation of the Core Material Containing Tartaric Acid

Composition:

core material containing tartaric acid23parts by weight
gum arabic1part by weight
talc2parts by weight

1 part by weight of gum arabic is dissolved in a mixture of 6.7 parts by weight of 96% ethanol and 13.5 parts by weight of purified water with stirring. Then 2 parts by weight of talc are dispersed in the solution with stirring.

In a fluidised bed processing apparatus, 23 parts by weight of core material containing tartaric acid are sprayed at an air inlet temperature of 35°-40° C. with the dispersion of gum arabic and talc by the under-bed spraying process.

The insulated core material containing tartaric acid is then dried in the circulating air drier at 40° C. for 8 hours.

To remove any lumps the dried insulated core material containing tartaric acid is screened through a screen with a nominal mesh size of 1.0 mm. The fraction of material with a particle size of <1 mm is further processed.

c) Production of the Active Substance Layer

Composition:

insulated core material containing tartaric acid57 parts by weight
hydroxypropylcellulose10 parts by weight
talc 8 parts by weight
active substance (mesylate of BIBR 1048)50 parts by weight

Hydroxypropylcellulose is dissolved in 335 parts by weight of 2-propanol with stirring and then the active substance and talc are dispersed in this solution with stirring.

In a fluidised bed processing apparatus, 91 parts by weight of insulated core material containing tartaric acid are sprayed at an air inlet temperature of 20°-30° C. with the dispersion containing the active substance by the under-bed spraying process.

The pellets containing the active substance are then dried in the circulating air drier at 35° C. for 8 hours.

To remove any lumps the pellets containing the active substance are screened through a screen with a nominal mesh size of 1.25 mm. The fraction of material with a particle size of <1.25 mm is further processed.

d) Packing Into Capsules

A quantity of active substance pellets containing in each case 50 or 150 mg of active substance base is packed into size 2 or size 0 hard gelatine capsules or HPMC capsules by means of a capsule filling machine.

A solution of 5.0 mmol of methanesulphonic acid in 25 ml ethyl acetate was added dropwise, with stirring, to a solution of 3139 mg (5.0 mmol) of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate base (prepared as described in WO 98/37075) in 250 ml ethyl acetate, at ambient temperature. After a few minutes the product began to crystallise out. It was stirred for another hour at ambient temperature and then for one more hour while cooling with ice, the precipitate was suction filtered, washed with about 50 ml of ethyl acetate and 50 ml of diethyl ether and dried at 50° C. in a circulating air drier.

Yield: 94% of theory

melting point: 178-179° C.

C34H41N7O5×CH4SO3 (723.86)

Elemental analysis: calc.:C 58.07%H 6.27%N 13.55%S 4.43%
found:58.11%6.30%13.50%4.48%
<- Previous Patent (Methods of using sus...)|Next Patent (Deuterium-enriched p...) ->
Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1 H-benzimidazol acid ethyl ester and the salts thereof (2024)

References

Top Articles
Latest Posts
Article information

Author: Dean Jakubowski Ret

Last Updated:

Views: 5449

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Dean Jakubowski Ret

Birthday: 1996-05-10

Address: Apt. 425 4346 Santiago Islands, Shariside, AK 38830-1874

Phone: +96313309894162

Job: Legacy Sales Designer

Hobby: Baseball, Wood carving, Candle making, Jigsaw puzzles, Lacemaking, Parkour, Drawing

Introduction: My name is Dean Jakubowski Ret, I am a enthusiastic, friendly, homely, handsome, zealous, brainy, elegant person who loves writing and wants to share my knowledge and understanding with you.